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Abstract

An enhanced self-organizing incremental neural network (ESOINN) is proposed to accomplish online unsupervised learning tasks. It improves
the self-organizing incremental neural network (SOINN) [Shen, F., Hasegawa, O. (2006a). An incremental network for on-line unsupervised
classification and topology learning. Neural Networks, 19, 90–106] in the following respects: (1) it adopts a single-layer network to take the place
of the two-layer network structure of SOINN; (2) it separates clusters with high-density overlap; (3) it uses fewer parameters than SOINN; and
(4) it is more stable than SOINN. The experiments for both the artificial dataset and the real-world dataset also show that ESOINN works better
than SOINN.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One objective of unsupervised learning is clustering. For
clustering, the popular k-means method is an often-used local
search procedure that depends heavily on the initial starting
conditions. Some improved k-means based methods such as the
global k-means algorithm (Likas, Vlassis, & Verbeek, 2003)
or the adaptive incremental LBG (Shen & Hasegawa, 2006b)
impart high computational loads. The main difficulty of such
k-means based methods is how to determine the number of
clusters k in advance. Another shortcoming of k-means based
methods is that they only can process isotropic clusters such as
circles, spheres, etc. The EM (Jain, Duin, & Mao, 2000) method
presents the disadvantageous possibility of convergence to a
point on the boundary of parameter space with unbounded
likelihood. Some other clustering methods such as single-
link (Sneath & Sokal, 1988), complete-link (King, 1967), and
CURE (Guha, Rastogi, & Shim, 1998) require large amounts of
memory and impart high calculation loads.
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Another objective of unsupervised learning is topology
learning, specifically, the representation of the topology struc-
ture of a high-dimension data distribution. The self-organizing
map (SOM) (Kohonen, 1982) requires predetermination of
the network structure and network size. The combination of
“competitive Hebbian learning” (CHL) and “neural gas” (NG)
(Martinetz, Berkovich, & Schulten, 1996) also requires a prior
decision about the network size. The salient disadvantage of
growing neural gas (GNG) (Fritzke, 1995) is the permanent in-
crease in the number of nodes.

Incremental learning addresses the ability of repeatedly
training a network using new data without destroying the old
prototype patterns. Incremental learning is useful in many ap-
plications. For example, if we intend to bridge the gap be-
tween the learning capabilities of humans and machines, we
must consider which circumstances allow a sequential acqui-
sition of knowledge. The fundamental issue for incremental
learning is how a learning system can adapt to new informa-
tion without corrupting or forgetting previously learned infor-
mation: the so-called Stability-Plasticity Dilemma (Carpenter
& Grossberg, 1988). Actually, GNG-U (Fritzke, 1997) deletes
nodes that are located in regions that have low-input probability
density. This criterion serves to follow a non-stationary input
distribution, but the old learned prototype patterns are thereby
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destroyed. Hamker (2001) proposes an extension to GNG to do
some supervised incremental learning tasks, but it is unsuitable
for unsupervised learning.

Shen and Hasegawa (2006a) proposed an incremental
learning method called the self-organizing incremental neural
network (SOINN) (Shen, 2006) to realize the unsupervised
incremental learning task. In fact, SOINN is useful to process
online non-stationary data, report a suitable number of classes,
and represent the topological structure of input probability
density. In Shen and Hasegawa (2006a), the authors compared
SOINN to GNG, providing analytical comparisons of SOINN
to other self-organizing neural networks. Empirical results
show that SOINN learns the necessary number of nodes, uses
fewer nodes than GNG, and obtains better results than GNG.

There are two main problems that remain unresolved with
SOINN. (1) SOINN adopts a two-layer network. During online
learning, the user must determine when to stop the learning of
the first layer, and when to begin the learning of the second
layer. (2) SOINN can separate clusters with very-low-density
overlap. If a high-density overlap exists between clusters, they
cannot work appropriately, and the clusters will link together
to form one cluster. Here, high-density overlap means that we
can visually detect the clusters separately by the naked eye, but
plenty of samples exist in the common areas between clusters.

This paper presents some designed techniques to solve
problems of SOINN. The proposed method is based on
SOINN. Therefore, we call the proposed method enhanced self-
organizing incremental neural network (ESOINN). ESOINN
inherits all functions of SOINN, uses fewer parameters than
SOINN, and solves some inherent problems of SOINN.

2. Overview of SOINN

A SOINN adopts a two-layer network. The first layer learns
the density distribution of the input data and uses nodes and
edges to represent the distribution. The second layer separates
clusters by detecting the low-density area of input data, and
uses fewer nodes than the first layer to represent the topological
structure of input data. When the second-layer learning is
finished, SOINN reports the number of clusters and gives
typical prototype nodes of every cluster. It also adopts the same
learning algorithm for the first and second layers. Fig. 1 shows
a flowchart of the SOINN learning process.

When an input vector is given to SOINN, it finds the
nearest node (winner) and the second-nearest node (second
winner) of the input vector. It subsequently judges if the
input vector belongs to the same cluster of the winner or
second winner using the similarity threshold criterion. The first
layer of SOINN adaptively updates the similarity threshold of
every node because the input data distribution is unknown.
If node i has neighbor nodes, the similarity threshold Ti is
calculated using the maximum distance between node i and its
neighboring nodes.

Ti = max
j∈Ni

‖Wi − W j‖. (1)

Therein, Ni is the set of neighbor nodes of node i and Wi is
the weight vector of node i . A similarity threshold Ti is defined
Fig. 1. Flowchart of SOINN.

as the minimum distance between node i and other nodes in the
network if node i has no neighbor nodes.

Ti = min
j∈N\{i}

‖Wi − W j‖. (2)

Here, N is the set of all nodes.
The input vector will be inserted into the network as a

new node to represent the first node of a new class if the
distance between the input vector and the winner or second
winner is greater than the similarity threshold of a winner or
second winner. This insertion is called a between-class insertion
because this insertion will engender the generation of a new
class, even if the generated new class might be classified to
some older class in the future.

If the input vector is judged as belonging to the same cluster
of winner or second winner, and if no edge connects the winner
and second winner, connect the winner and second winner with
an edge, and set the ‘age’ of the edge as ‘0’; subsequently,
increase the age of all edges linked to the winner by ‘1’.

Then, update the weight vector of the winner and its
neighboring nodes. We use i to mark the winner node, and Mi
to show the times for node i to be a winner. The change to the
weight of winner ∆Wi and change to the weight of the neighbor
node j (∈ Ni ) of i∆W j are defined as ∆Wi =

1
Mi

(Ws − Wi )

and ∆W j =
1

100Mi
(Ws − W j ), where Ws is the weight of the

input vector.
If the age of one edge is greater than a predefined parameter

agemax, then remove that edge.
After λ learning iterations (λ is a timer), the SOINN inserts

new nodes into the position where the accumulating error is
extremely large. Cancel the insertion if the insertion cannot
decrease the error. The insertion here is called within-class
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insertion because the new inserted node is within the existing
class; also, no new class will be generated during the insertion.
Then SOINN finds the nodes whose neighbor is less than or
equal to 1 and deletes such nodes based on the presumption
that such nodes lie in the low-density area; we call such nodes
“noise nodes.”

In fact, because the similarity threshold of the first layer of
SOINN is updated adaptively, the accumulation error will not
be high. Therefore, the within-class insertion is only slightly
successful. The within-class insertion for the first layer is
unnecessary.

After LT learning iterations of the first layer, the learning
results are used as the input for the second layer. The second
layer of SOINN uses the same learning algorithm as the first
layer. For the second layer, the similarity threshold is constant;
it is calculated using the within-cluster distance and between-
cluster distance (Shen & Hasegawa, 2006a). With a large
constant similarity threshold, different from that of the first
layer, the accumulation error for nodes of the second layer will
be very high, and within-class insertion plays a major role in
the learning process. With a large constant similarity threshold,
the second layer also can delete some “noise nodes” that
remain undeleted during first-layer learning. The experiment of
the artificial dataset described in Shen and Hasegawa (2006a)
shows details of the function of the second layer of SOINN.

3. Enhanced self-organizing incremental neural network
(ESOINN)

Using the analysis described in Section 2, the two-layer
SOINN presents the following shortcomings:

• It is difficult to choose when to halt first-layer learning and
begin second-layer learning.

• For the second layer, if the learning results of the first layer
were changed, all learned results of the second layer would
be destroyed, thereby necessitating re-training of the second
layer. The SOINN second layer is unsuitable for online
incremental learning.

• Within-class insertion is needed for the second layer
of SOINN. However, it requires many user-determined
parameters.

• SOINN is not stable: it cannot separate high-density
overlapped areas well.

To solve the above-mentioned shortcomings, we remove the
second layer of SOINN and design some techniques to help the
single-layer SOINN obtain even better clustering results than
those of two-layer SOINN. We show a flowchart of ESOINN in
Fig. 2.

Comparison of Fig. 2 to Fig. 1 reveals that ESOINN only
adopts a single-layer network. For between-class insertion,
ESOINN adopts the same scheme as SOINN. For building a
connection between nodes, unlike SOINN, ESOINN adds a
condition to judge if the connection is needed. After λ learning
iterations, ESOINN separates nodes to different subclasses
and deletes edges that lie in overlapped areas. ESOINN does
not achieve within-class insertion because it adopts only a
Fig. 2. Flowchart of ESOINN.

single-layer structure; within-class insertion is only slightly
successful.

The removal of the second layer makes ESOINN more
suitable for online or even life-long learning tasks than two-
layer SOINN; it also obviates the difficult choice of when
to stop first-layer learning and begin second-layer learning.
The removal of within-class insertion eliminates five user-
determined parameters. In the following section, we discuss
how to process the overlapped area.

3.1. Overlap between classes

In this section, we define the node density, discuss a method
to find the overlap between classes, and judge whether it is
necessary to build a connection between a winner and a second
winner. We note that density in the overlapped area is lower
than that in the center part of a class.

3.1.1. Density of nodes
Node density is definable using the local accumulated

number of samples: if many input samples are near the node,
the node density is high; if few input samples are near the node,
the density of this node is low. For that reason, during a period
of learning, we count the times that a node has been a winner,
and use this count as the node density. This “times of being
a winner” definition for density is adopted by some methods
such as SOINN. Although it sounds natural, this definition will
engender the following problems:

(1) There will be numerous nodes that lie in the high-density
area, meaning that, in the high-density area, the chance
for a node to be a winner will not be considerably higher
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than that in the low-density area. Consequently, we cannot
simply use the “times of being winner” to measure the
density.

(2) In incremental learning tasks, some nodes generated in
earlier stages will not again be a winner for a long time.
Using the “times of being winner” definition, such nodes
might be judged as low-density nodes in a later learning
stage.

In ESOINN, we use a new definition of density to solve
the problems described above. The basic idea is the same as
the local accumulated number of samples, but we define a
“point” to take the place of “number”, and use the mean of
the accumulated point of a node to describe the density of
that node. Unlike the “times of being a winner”, which is only
related to the special node itself, we consider the relationship
between nodes when we calculate the point p of a node. First
we calculate the mean distance d̄i of node i from its neighbors.

d̄i =
1
m

m∑
j=1

‖Wi − W j‖. (3)

In that equation, m is the number of neighbors of node i ; Wi is
the weight vector of node i .

Then calculate the “point” of node i as the following.

pi =


1

(1 + d̄i )2
if node i is winner

0 if node i is not winner.
(4)

From the definition of “point” we know that if the mean
distance of node i to its neighbors is large, then the number of
nodes in this area is low; consequently, the distribution of nodes
is sparse and the density in this area will be low. We thereby
give low “points” to node i . If the mean distance d̄i is small, it
means that the number of nodes in this area is high, the density
in this area will be high; we therefore give high “points” to
node i . We add 1 in the denominator of the “point” definition to
make the point value less than 1. For one iteration, we calculate
only the “points” for node i when node i is the winner. The
“points” of other nodes are 0 in this iteration. Therefore, for
one iteration, the accumulated points for the winner will be
changed, but the accumulated points for other nodes remain
unchanged (‘no change’).

The accumulated points si are calculated with the sum of
points for node i during a period of learning:

si =

n∑
j=1

(
λ∑

k=1

pi

)
. (5)

Therein, λ is the number of input signals during one
learning period; n indicates the learning period times (it can be
calculated with LT/λ, where LT means total number of input
signals).

Therefore, we give the mean accumulated point (density) of
node i :

hi = s̄i =
1
N

si =
1
N

n∑
j=1

(
λ∑

k=1

pi

)
. (6)
Fig. 3. Density distribution with the overlapped area.

In this equation, N represents the account of the period when
accumulated points si are greater than 0. Note that N is not
necessarily equal to n. We do not use n to take the place of
N because, for incremental learning, during some periods of
learning, the accumulated points si will be 0. If we use n to
calculate the mean accumulated points, the density of some old
learned nodes will decrease. Using N to calculate the mean
accumulated points, even during the life-long span learning, the
density of old learned nodes will remain unchanged if no new
signals near the node are input to the system. However, for some
applications, it is necessary that very old learned information be
forgotten. In such cases, we need only to use n to take the place
of N . Thereby, we can continue learning new knowledge and
forget very old knowledge. In this paper, we specifically present
incremental learning and hope that all learned knowledge is
stored in the network. We use N to define the node density.

3.1.2. Find overlapped area between classes
Regarding the definition of density, the simplest way to find

the overlapped area is to find the area with lowest density. Some
methods such as GCS (Fritzke, 1994) and SOINN (Shen &
Hasegawa, 2006a) adopt this technique to judge the overlapped
area. However, this technique cannot ensure that the low-
density area is exactly the overlapped area. For example, for
some classes that follow a Gaussian distribution, at the class
boundary, the density will be low. The overlap comprises some
boundaries of overlapped classes. Therefore, the density of
the overlap must be higher than that of the non-overlapped
boundary area. For example, in Fig. 3, part A is shown as the
overlapped area, but the density of part A is higher than that of
either part B or part C. To solve this problem, ESOINN does not
use the lowest-density rule, but rather designs a new technique
to detect the overlapped area.

In SOINN, after a period of learning, if an overlap exists
between classes, it is possible that all nodes of such classes link
together to form one class. Our target of this section is to find
the overlapped area in the composite class (which comprises
many clusters), avoid building a connection between different
classes, and thereby efficiently separate overlapped classes.

To detect the overlapped area, we first separate the
composite class to several subclasses using the following rule:
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Fig. 4. Fluctuated distribution with overlapped area.

Algorithm 3.1. Separate a composite class into subclasses

(1) We call a node an apex of a subclass if the node has a local-
maximum density. Find all apexes in the composite class,
and give such apexes different labels.

(2) Classify all other nodes with the same subclass label as their
apexes.

(3) Such nodes lie in the overlapped area if the connected nodes
have different subclass labels.

For example, in Fig. 3, two classes exist: the nodes in Part A
are very easily detected using Algorithm 3.1.

This method sounds reasonable, but for an actual task, it
will lead to several problems. For example, two classes exist
in Fig. 4, but the density distribution of nodes is not smoothing,
but rather fluctuating (which might be attributable to noise or
the fewer samples in the original dataset). With Algorithm 3.1,
Fig. 4 will be separated into too many subclasses and many
overlapped areas will be detected. We seek to smooth Fig. 4
to Fig. 3 before we separate the composite class to subclasses
to solve this problem. The smoothing is realized by judging
whether we need to combine two subclasses to form one united
subclass.

Taking subclass A and subclass B in Fig. 4 as an example,
assume that the apex density of subclass A is Amax, and that the
apex density of subclass B is Bmax. We combine subclasses A
and B into one subclass if the following condition is satisfied.

If

min(hwinner, hsecondwinner) > αA Amax (7)

or

min(hwinner, hsecondwinner) > αB Bmax. (8)

Here, the winner and second winner lie in the overlapped area
between subclass A and B. Actually, α is a parameter that
belongs to [0, 1] which can be calculated automatically using
the threshold function:

αA =

0.0 If 2.0meanA ≥ Amax
0.5 If 3.0meanA ≥ Amax > 2.0meanA
1.0 If Amax > 3.0meanA.

(9)
Therein, meanA is the mean density of nodes in subclass A,

meanA =
1

NA

∑
i∈A

hi . (10)

NA is the number of nodes in subclass A.
In summary, by separating the composite class into different

subclasses and by combining the non-overlapped subclasses
into one subclass, we can detect the overlapped area inside
the composite class. After detecting the overlapped area, we
remove the connection between nodes that belong to different
subclasses, and separate the overlapped classes.

Algorithm 3.2. Build connection between nodes

(1) Connect the two nodes with an edge if the winner or second
winner is a new node (it is not yet determined to which
subclass the node belongs).

(2) Connect the two nodes with an edge if the winner and
second winner belong to the same subclass.

(3) If the winner belongs to subclass A, the second winner
belongs to subclass B. If (7) or (8) is satisfied, connect the
two nodes, and combine subclasses A and B. Otherwise, do
not connect the two nodes; if a connection exists between
the two nodes, remove the connection.

Using Algorithm 3.2, if the winner and second winner
belong to different subclasses, ESOINN provides a chance to
connect these two nodes. We might want to do so to limit the
influence of noise during separation of subclasses, and try to
smooth the fluctuated subclasses. The subclasses can still be
linked together (e.g., subclasses A and B in Fig. 4) if two
subclasses are mistakenly separated.

Algorithm 3.2 shows that ESOINN results will be more
stable than those of SOINN because, even with low-density
overlap, SOINN will sometimes separate different classes
correctly, and sometimes recognize different classes as one
class. Using the smoothing technique, ESOINN can separate
such overlapped classes stably; ESOINN also overcomes the
possibility of over-separation.

3.2. Delete nodes caused by noise

To delete nodes caused by noise, SOINN removes nodes
in regions with very low probability density. SOINN uses this
strategy: if the number of input signals generated so far is an
integer multiple of a parameter λ, remove those nodes with one
or no topological neighbor. For one-dimensional input data and
datasets with little noise, SOINN uses the local accumulated
number of signals of the candidate-deleting nodes to control the
deletion behavior. In addition, the two-layer network structure
helps SOINN delete the nodes that are caused by noise.

For ESOINN, we adopt a nearly identical technique to that
of SOINN to delete nodes resulting from noise: if the number
of input signals generated so far is an integer multiple of a
parameter λ, remove those nodes whose topological neighbors
are two or fewer than two. The difference between ESOINN and
SOINN is that we also delete those nodes with two topological
neighbors. We use the local accumulated “point,” and different
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control parameters c1 (for two-neighbor nodes) and c2 (for
one-neighbor nodes) to control the deletion behavior. We also
delete some nodes with two neighbors because ESOINN only
adopts a single-layer network, the adaptively changed similarity
threshold renders “noise nodes” as possibly difficult to delete
using the original SOINN strategy. As described in Section 2,
SOINN can delete some remaining “noise nodes” using the
second layer. For single-layer ESOINN, we must relax the
condition for deleting nodes. We add a parameter c1 to control
the deletion process to avoid deleting some useful nodes.

3.3. Classify nodes to different classes

According to Shen and Hasegawa (2006a), if two nodes can
be linked with a series of edges, we say that a path exists
between the two nodes, i.e., given a series of nodes xi ∈ A, i =

1, 2, . . . , n, makes (i, x1), (x1, x2), . . . , (xn−1, xn), (xn, j) ∈

C , we say that a “path” exists between node i and node j . Here,
A is the node set and C is the connection set (or edge set).

Martinetz and Schulten (1994) prove some theorems and
conclude that the competitive Hebbian rule is suitable for
forming a path that preserves representations of a given
manifold. The network connectivity structure corresponds
to the induced Delaunay triangulation, which defines both
a perfectly topology-preserving map and a path-preserving
representation if the number of nodes is sufficient for obtaining
a dense distribution. With the path-preserving representation,
the competitive Hebbian rule allows determination of which
parts of a given pattern manifold are separated and form
different clusters. If two nodes are linked with one path, the two
nodes belong to one cluster. Here, we use the same algorithm
as SOINN to classify nodes.

Algorithm 3.3. Classify nodes to different classes

(1) Initialize all nodes as unclassified.
(2) Randomly choose one unclassified node i from node set A.

Mark node i as classified and label it as class Ci .
(3) Search A to find all unclassified nodes that are connected

to node i with a “path.” Mark these nodes as classified and
label them as the same class as node i .

(4) Go to Step (2) to continue the classification process until all
nodes are classified if unclassified nodes exist.

3.4. Complete algorithm of ESOINN

As a summary, we give the complete algorithm of ESOINN
here.

Algorithm 3.4. Enhanced self-organizing incremental neural
network (ESOINN)

(1) Initialize node set A to contain two nodes with weight
vectors chosen randomly from the input pattern. Initialize
connection set C , C ⊂ A × A, to the empty set.

(2) Input new pattern ξ ∈ Rn .
(3) Search the nearest node (winner) a1, and the second-
nearest node (second winner) a2 by a1 = arg mina∈A ‖ξ −

Wa‖, a2 = arg mina∈A\{a1} ‖ξ − Wa‖. If the distance
between ξ and a1 or a2 is greater than similarity threshold
Ta1 or Ta2 , the input signal is a new node, add it to A and
go to Step 2 to process the next signal. Threshold T is
calculated using formula (1) or (2).

(4) Increase the age of all edges linked with a1 by 1.
(5) Use Algorithm 3.2 to judge if it is necessary to build a

connection between a1 and a2.
(a) If necessary: If an edge exists between a1 and a2, set

the age of this edge 0; if no edge exists between a1 and
a2, build a connection between a1 and a2, and initialize
the age of this edge 0.

(b) If that is not necessary: If an edge exists between a1
and a2, remove the connection between a1 and a2.

(6) Update the density of the winner using Eq. (6).
(7) Add 1 to a local accumulated number of signals Ma1 ,

Ma1(t + 1) = Ma1(t) + 1.
(8) Adapt the weight vectors of the winner and its direct

topological neighbors by a fraction ε1(t) and ε2(t) of the
total distance to the input signal,

∆Wa1 = ε1(Ma1)(ξ − Wa1)

∆Wi = ε2(Ma1)(ξ − Wi ) for all direct neighbors i of a1.

We adopt the same scheme as SOINN to adapt the learning
rate over time by ε1(t) = 1/t and ε2(t) = 1/100t .

(9) Find the edges whose ages are greater than a predefined
parameter agemax, then remove such edges.

(10) If the number of input signals generated so far is an integer
multiple of parameter λ,
(a) Update the subclass label of every node by

Algorithm 3.1.
(b) Delete nodes resulting from noise as follows:

i. For all nodes in A, if node a has two neighbors,
and ha < c1

∑NA
j=1 h j/NA, then remove the node

a. NA is the number of nodes in node set A.
ii. For all nodes in A, if node a has one neighbor, and

ha < c2
∑NA

j=1 h j/NA, then remove node a.
iii. For all nodes in A, if node a has no neighbor, then

remove node a.
(11) If the learning process is finished, classify nodes to

different classes using Algorithm 3.3; then report the
number of classes, output the prototype vectors of every
class, and stop the learning process.

(12) Go to Step (2) to continue unsupervised online learning if
the learning is not finished.

Using the algorithm shown above, we first find the winner
and second winner of the input vector. Then we judge whether
it is necessary to build a connection between the winner and
second winner and connect them or remove the connection
between them. After updating the density and weight of the
winner, we update the subclass label of nodes after every λ

times of learning. Then we delete nodes that are caused by
noise. Here, noise is not dependent upon λ; it depends only on
the input data. After learning is finished, we classify all nodes
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Fig. 5. Artificial dataset I used for experimentation.

to different classes. During the learning process, we need not
store the learned input vectors; we say that this algorithm can
realize online learning. After a period of learning, we input
new data into ESOINN after ESOINN converges. The network
will be grown to learn new information if the distance between
new data and the winner or second winner is greater than
the similarity threshold. If the distance between new data and
winner or second winner is less than the similarity threshold, it
means that the new data has been learned well, and no change
occurs to the network. This process renders the algorithm
suitable for incremental learning: we learn new information
without destroying learned knowledge. Consequently, we need
not retrain the network if learned knowledge is input to the
system in the future.

4. Experiment

4.1. Artificial dataset

We first adopt the same artificial dataset I (Fig. 5) used
in Shen and Hasegawa (2006a); it comprises two overlapped
Gaussian distributions, two concentric rings, and a sinusoidal
curve. There is 10% noise added to this dataset. With this
dataset, under both stationary and non-stationary environments,
the two-layer SOINN reports that five classes exist; it gives the
topological structure of every class. The stationary environment
dictates that the patterns are chosen randomly from the
whole dataset to train the network online. A non-stationary
environment dictates that the patterns are chosen sequentially,
not randomly, from the five areas of original dataset I (see table
1 of Shen and Hasegawa (2006a)) to train the network online. A
non-stationary environment is used to simulate the incremental
online learning process.

We test the single-layer ESOINN using the same dataset. We
set parameters as λ = 100, agemax = 100, c1 = 0.001 and c2 =

1.0. Fig. 6 shows the result under a stationary environment;
Fig. 7 depicts the result under a non-stationary environment.
Fig. 6. ESOINN stationary results for dataset I.

Fig. 7. ESOINN nonstationary results for dataset I.

Under both stationary and non-stationary environments, the
ESOINN system reports that five classes exist and gives the
topological structure of each class. The ESOINN system can
realize the same functions of SOINN well for the same artificial
dataset reported in Shen and Hasegawa (2006a).

Then we use artificial dataset II (Fig. 8), which comprises
three overlapped Gaussian distributions, to test SOINN and
ESOINN. We add 10% noise to this dataset. In the dataset, the
density of the overlapped area is high, but the dataset can still
be separated into three classes based solely on its appearance
when plotted. Under the stationary environment, we choose
samples from the original dataset randomly to train the network
online. Under a non-stationary environment, the patterns are
chosen sequentially, not randomly, from the three classes. At
the first stage, we choose samples online from class 1 to train



900 S. Furao et al. / Neural Networks 20 (2007) 893–903
Fig. 8. Artificial dataset II used for experimentation.

Fig. 9. SOINN stationary result for dataset II.

the network; after learning 10,000 times, we choose samples
only from class 2; and after another 10,000 times learning, we
choose samples from class 3 and perform online training. After
the learning process is finished, we classify nodes to different
classes and report the results.

Figs. 9 and 10 depict SOINN results (The parameters are:
λ = 200; agemax = 50; c = 1.0; and other parameters,
which have identical values to those described in Shen and
Hasegawa (2006a)). For both stationary and non-stationary
environments, SOINN cannot separate the three high-density
overlapped classes. Figs. 11 and 12 show ESOINN results (The
parameters are: λ = 200, agemax = 50, c1 = 0.001, and c2 =

1.0). Using the proposed improvements for SOINN, ESOINN
separated the three high-density overlapped classes. The system
Fig. 10. SOINN nonstationary result for dataset II.

Fig. 11. ESOINN stationary result for dataset II.

reports that three classes exist in the original dataset, and gives
the topological structure of every class.

The experiment for artificial dataset II shows that ESOINN
can separate high-density overlapped classes better than
SOINN can.

4.2. Real-world data

For use as real-world data, we take 10 classes from the
AT&T FACE database (http://www.uk.research.att.com); each
class includes 10 samples (Fig. 13). The size of each image is
92 × 112 pixels, with 256 gray levels per pixel. Feature vectors
of such images are taken as follows. First, the original image,
92 × 112, is re-sampled to a 23 × 28 image using nearest-
neighbor interpolation. Then the Gaussian method is used to

http://www.uk.research.att.com
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Fig. 12. ESOINN nonstationary result for dataset II.

smooth the 23 × 28 image with Gaussian width = 4, σ = 2 to
obtain the 23 × 28 feature vectors (Fig. 14).
Under a stationary environment, samples are chosen
randomly from the original dataset. For non-stationary
environments, at the first stage, samples from class 1 are input
to the system, after 1000 times training, samples from class 2
are input to the system, and so on. The parameters are set as λ =

25, agemax = 25, c1 = 0.0, and c2 = 1.0. For both stationary
and non-stationary environments, ESOINN reports 10 classes
exist in the original dataset, and gives prototype vectors (nodes
of network) of every class. We use such prototype vectors
to classify the original training data to different classes, and
report the recognition ratio. Compared to SOINN, we get nearly
the same correct recognition ratio (90% for the stationary
environment, and 86% for the non-stationary environment).

To compare the stability of SOINN and ESOINN, we
performed 1000 times’ training for both SOINN and ESOINN,
and recorded the frequency of the number of classes. The
upper panel of Fig. 15 portrays SOINN results, the lower panel
of Fig. 15 depicts ESOINN results. The distribution of the
number of classes for SOINN (2–16) is much wider than that
of ESOINN (6–14); moreover, the frequency near number 10
of SOINN is much less than ESOINN, which reflects that
ESOINN is more stable than SOINN.

For the second group of real-world data, we use the
Optical Recognition of Handwritten Digits database (optdigits)
Fig. 13. Original face images.

Fig. 14. Feature vectors of original face images.
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Fig. 15. Distribution for the number of classes.

(http://www.ics.uci.edu/˜mlearn/MLRepository.html) to test
SOINN and ESOINN. In this database, 10 classes (handwritten
digits) exist among a total of 43 people, 30 contributed to the
training set and a different 13 to the testing set; there are 3823
samples in all in the training set, along with a total of 1797
samples in the testing set. The sample dimensions are 64.

First, we use the training set to train SOINN (the parameters
are λ = 200, agemax = 50, and c = 1.0; the other
parameters are the same as those in Shen and Hasegawa
(2006a)). Under both a stationary environment and a non-
stationary environment, SOINN reports that 10 classes exist.
The upper panel of Fig. 16 portrays the typical prototype
vectors of the SOINN result. Then we use the resultant SOINN
prototype vectors to classify test data. The correct recognition
ratio for the stationary environment is 92.2%; the correct
recognition ratio for the non-stationary environment is 90.4%.
We performed 100-times testing for SOINN. The number of
classes is distributed from 6 to 13 for both stationary and non-
stationary environments.

We used the training set to train ESOINN. Under both
stationary and non-stationary environments (λ = 200,
agemax = 50, c1 = 0.001, and c2 = 1.0), ESOINN reports that
12 classes exist. The lower panel of Fig. 16 shows the typical
prototype vectors of the ESOINN result. ESOINN separates
the digit 1 into two classes, and separates the digit 9 into two
classes because, from the original image of the digit, a great
difference exists between samples of digit 1 and digit 1’ (and a
great difference exists between samples of digit 9 and digit 9’).
SOINN deleted those nodes that are created by samples like
digit 1’ and 9’. ESOINN can separate such overlapped class
digit 1 and 1’ (digit 9 and 9’), the information of the original
dataset is retained well.

We then use the resultant ESOINN prototype vectors to
classify test data into different classes. The correct recognition
ratio for the stationary environment is 94.3%, and the correct
recognition ratio for the non-stationary environment is 95.8%.
We performed 100-times’ testing for ESOINN. The number of
classes is distributed from 10 to 13 for both stationary and non-
stationary environments.

From real-world data experiment of optdigits, we know that
ESOINN can separate overlapped classes better than SOINN.
ESOINN gets a higher recognition ratio, and works more stably
than SOINN.

5. Conclusion

In this paper, we proposed an enhanced self-organizing
incremental neural network (ESOINN), which is based on
SOINN. The proposed method can realize all SOINN functions.
Using single-layer network to take the place of two-layer
network structure of SOINN, ESOINN can realize pure
online incremental learning. By setting conditions for building
a connection between nodes, ESOINN can separate high-
density overlapped classes. In fact, ESOINN only adopts
between-class insertion to realize incremental learning. For that
reason, ESOINN easily realizes a solution and requires fewer
parameters than SOINN; using some smoothing techniques,
ESOINN is also more stable than SOINN.

Some other methods to separate overlapped areas exist, such
as Learning Vector Quantization (LVQ). Such methods belong
to supervised learning and must label all training samples.
However, the acquisition of labeled training data is costly
and time-consuming, whereas unlabelled samples are easily
obtainable. Even if some supervised learning techniques can
obviate the necessity of judging the overlap area, it is still
very important to find some unsupervised learning method to
avoid the use of labeled data. ESOINN (and SOINN) belongs
to unsupervised learning, with the judging of overlap area,
ESOINN can obtain satisfactory learning results. In addition,
the finding of overlap area is simple. It requires merely a local
maximum for determination of subclasses. That feature makes
ESOINN extremely useful for some real tasks.
Fig. 16. Result of Optdigits dataset, the upper panel shows results of SOINN, the lower panel shows results of ESOINN.

http://www.ics.uci.edu/~mlearn/MLRepository.html
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